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Mesoscopic Q1D wire

A wire made of the normal metal 1s called

mesoscopic 1f the wire length L 1s smaller than

7  the electron coherence length L ) [1-3] where for
/ [— /ZVV example:
in Au: Lq) (T=40 mK) = 12 um,
in Al: L, (T=3K)=3.6 um.

The wire 1s called guasi-one-dimensional (Q1D), if L 1s much larger than the
width (W) and thickness (H ) of the wire [3]. Fabrication of the Q1D wires
from such metals like Au, Ag, Cu, etc., usually involves techniques like the

electron beam lithography, lift-off, and metal evaporation. These techniques

always provide wires with disorder due to the grain boundaries, impurity

atoms_and rough wire edges [4]. Disorder scatters the conduction electrons

and limits the electron mean free path ( / ) in the wires to ~ 10 - 100nm. Of

fundamental interest are the wires with W and H as small as ~ 10 - 100nm.



Objective

In work [5] we study electron transport in Q1D metallic wires made of
a two-dimensional (2D) conductor (H — 0) of width W and length L
>> W. Our aim 1s to compare an impurity-free wire with rough edges
with a smooth wire with impurity disorder. We calculate the electron
transmission through the wires by the scattering-matrix method, and
we find the Landauer conductance for a large ensemble of disordered
wires. Our results are representative for wires made of a normal metal
as well as of a 2D electron gas at a semiconductor heterointerface.

The single electron wave functions ¢(x,y) at the Fermi energy E_ in the wire
obey the Schrodinger equation
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+V(x,y)+U (x,y)|pe(x,y)=E_ @(x,y),

where V(x , y) is the potential describing the wire edges and U (x , y) is

the potential due to the impurity disorder.




Models of disorder used in our calculations

Impurities

The sign of the impurity strength y
and impurity positions (x , y) are varied

at random. The impurity potential is
U, (x,y)=2, ys(x—x)5(y—y,).

The wire has smooth edges

0, for O<y<W
o, outside (0,W)

Vix,y)=

Edge roughness

This wire 1s without impurities:

U, (x,y)=0.
The wire edges, h(x) and d(x), are
the step functions with the amplitude A
and constant step length (correlation
length) Ax. The edge potential is

0, for d(x)<y<h(x)

Vo= S side (d(x), h(x))




Consider the wire connected to two perfect semi-infinite leads of width W.

The transverse wave functions (channels) in the leads are nd 1

2/Lsin(1Tny/W), for O<y<W : 1_4'
0, outside (0,W) w.
A

+

X (y)=

n

The total wave function reads

®(0,y)=

n=—

AL(0)+A, (0)|x, (3

[E—

at x =0 (in the lead 1) and

@ (L,y)=),

n=1

BI(L)+B, (L)X, (»)

at x = L (in the lead 2). Here | |
A’ (x)za:elk”x, A (x)Ia;e_lk”x,
and analogously for B *(x) and B "(x), where k 1s the wave vector in the channel n

at energy 5212
E =¢ +——

2m

and € = A’ n’12mW? is the eigenenergy of state X (y).



The scattering-matrix approach

The incoming amplitudes A* and B are related to the outcoming amplitudes A"

and B* through the scattering matrix S as

A_
B+

-A+
\B

b

where A* and B* are N X 1 vectors and ¢, r, t', r' are the N X N matrices. In

particular, r 1s the transmission amplitude across disorder from the channel n

to the channel n"and ' . is corresponding reflection amplitude.

The S-matrix of the disordered sample can be expressed as a product of S-

matrices of the individual scaterrers which constitute disorder [6-8].
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The Landauer conductance

At zero temperature, the conductance (in units 2e¢*/h) of the disordered wire is
given by the Landauer formula

N N N k
g=2.T,=2.| 2 e, Pl
n=1 n=1\{n'=1

where we sum over all N - conductive channels. Here Tn are the transmission

probabilities through disorder for the electron impinging disorder in the n-th
conducting channel.

In the ensemble of macroscopically identical wires disorder fluctuates from wire
to wire and so does the conductance. Hence it 1s meaningful to evaluate (1) for
the ensemble of wires and to study the ensemble-averaged conductance (g),
variance [ {g?) - (g)*]"?, resistance {1/g) , ...



Analytical formulas for the wires
with white-noise disorder (impurities)
The theory of Anderson localization (see e.g. [9]) predicts for the mesoscopic Q1D

wire following transport regimes:
1) weak localization regime, where / << L << ¢ and § = N/ is the localization length

The average conductance of the wire consists of the classical Ohmic term minus
small weak localization correction
<g>=0difW/L— 1/3,

where G =0, l/k, 1s the diffusive conductivity, k, is the 2D Fermi wave vector

and n =k, /27 is the 2D electron density. The average resistance linearly increases
where p.= 1/N_1s the contact resistance and p , = 1/G, 1s the diffusive resistivity.

The conductance fluctuations are length-independent (universal)
var(g) = \/< g ) —{g)*=0.365.

2) strong localization regime, where & << L

The conductance/resistance exponentially decreases/increases with L and typical
conductance obeys the formula (Ing)=—L/E.



Numerical results for uncorrelated roughness (Ax < i)

impurities edge roughness
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In the quasi-ballistic and diffusive In the quasi-ballistic regime (L << [):
regime the resistance obeys the (p)=1IN _+ p,LIW,  (dotted line)
standard linear increase In the diffusive regime (I << L << §):

(p)=1IN + P LIW (dashed line) {p)=1 /Ni{ff+ 0, LIW, (dashed line)
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The ratio of the quasi-ballistic resistivity p,, to the diffusive resistivity p »

edge roughness (Ax <A,)
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1s ~ N _1independently on the parameters of roughness.



edge roughness
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Transport in the diffusive regime 1s carried by a small effective number of open
channels N ~ 6. This number is universal - independent on N and on the

parameters of roughness.
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The average channel transmissions (7" )
are equivalent ( T1>:<T2> == <TN )
and 1n the diffusive regime

(T n> ~I[/L.

In the wire with edge roughness (T ) decay

fast with raising n because scattering by
rough edges 1s weakest in the channel n =1
and strongest in the channel n =N ..



impurities edge roughness impurities edge roughness
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For edge roughness 1/{g) rises linearly with the L (a sign of the diffusive regime)
up to the L ~ 2&. Moreover we observe a tendency of a single parameter scaling.



Boltzmann equation
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In Au wire, [, agrees with [, —only for the unrealistic small roughness

amplitude A and both semiclassical mean free paths are at least about 2 times

larger than quantum /.



Conclusions

We first study the impurity-free wire whose edges have roughness with
a correlation length comparable with the Fermi wave length. Simulating
wires with the number of the conducting channels (V) as large as 34 -

347, we observe the roughness-mediated effects which are not

observable for small N (~ 3 - 9) used in previous works:

1) We observe the crossover from the quasi-ballistic transport to the
diffusive one, where the ratio of the quasi-ballistic resistivity to the
diffusive resistivity i1s ~ N independently on the parameters of

roughness.

2) We find that transport in the diffusive regime is carried by a small
effective number of open channels, equal to ~ 6. This number is
universal - independent on N _and on the parameters of roughness.



3) We see that the inverse mean conductance rises linearly with the

wire length (a sign of the diffusive regime) up to the length twice
larger than the electron localization length.

4) We develop a theory based on the weak-scattering limit and
semiclassical Boltzmann equation, and we explain the first and second
observations analytically. For impurity disorder we find a standard
diffusive behavior.

S) We derive from the Boltzmann equation the semiclassical electron
mean-free path and we compare it with the quantum mean-free path
obtained from the Landauer conductance. They coincide for the
impurity disorder, however, for the edge roughness they strongly
differ, 1.e., the diffusive transport in the wire with rough edges 1s not
semiclassical. It becomes semiclassical only for roughness with large
correlation length. The conductance then behaves like the conductance
of the wire with impurities, also showing the conductance fluctuations
of the same size.
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